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Abstract. Substitutional defects in a cubic symmetry (such as a lithium defect in a KCl
host crystal) can be modelled appropriately by an eight-state system. Usually this tunnelling
degree of freedom is approximated by a two-level system. We investigate the observable
differences between the two models in three contexts. First, we show that the two models
predict different relations between the temperature dependence of the specific heat and that
of the static susceptibility. Second, we demonstrate that in the presence of external forces
(pressure and electric field) the eight-state system shows features that cannot be understood
within the framework of the two-level approximation. In this context we propose an experiment
for measuring the parameter governing tunnelling along the face diagonal. Finally, we discuss
the differences between the models appearing for strongly coupled pairs. Geometric selection
rules and particular forms of asymmetry lead to clear differences between the two models.

1. Introduction

Quantum tunnelling of substitutional defect ions in alkali halide crystals leads to particular
low-temperature properties [1]. Due to their misfit in size or shape, such defect ions are
confined to a potential energy landscape with a few degenerate potential wells. At low
temperatures, thermally activated crossing over the barriers is inhibited, and the defect
ion passes through the barrier by quantum tunnelling; typically, at a few kelvin, hopping
becomes relevant. The potential energy landscape in which the defect ion moves is produced
by the host crystal, and therefore reflects its symmetry, which for most alkali halide crystals
is cubic (e.g. the fcc structure of potassium chloride). There are only three multi-well
potentials which are consistent with this symmetry: twelve wells at the edges of a cube,
six wells at the centres of the surfaces, and eight wells at the corners of a cube. In all
cases the edges of the cube lie along the crystal axes, and the multi-well structure leads to
off-centre sites for the defect ion. The off-centre position has two immediate consequences:
it separates the centres of charge, and leads to a local distortion of the crystal. Hence both
an electric dipole moment and an elastic quadrupole moment are connected to the defect,
which can thus interact with lattice vibrations, external fields, or neighbouring defects.
Consequently, only at low defect concentrations can one describe the situation in terms of
isolated tunnelling systems. With rising concentration, pairs, triples, etc, of defects become
involved, until finally one faces a complicated many-body system [4, 10].

A standard example of tunnelling defects is that of potassium chloride doped with a
small proportion of lithium ions (KCl:Li). This system is well described in terms of isolated
defects for concentrations up to say 20 ppm. The minima of the system lie at the corners of
a cube (d ≈ 1.4 Å); in the low-temperature regime the relevant degree of freedom is thus an
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eight-state system (ESS). There are three different matrix elements for tunnelling: (i) along
the edges of the cube,k; (ii) along a face diagonal,f ; and (iii) along a space diagonal,r;
edge tunnelling dominates the defect spectrum [5] for simple geometric reasons: the edge
is the shortest distance between the potential minima. Neglecting face and space diagonal
tunnelling, the problem factorizes into three two-level systems (TLS); this much simpler
model is often used for the description of the defect.

In this paper we want to study to what extent the TLS is a good approximation for the
ESS (and hence to what extent tunnelling along the face and space diagonal on the one hand
and the particular geometry of the defect on the other are negligible). We find that in most
contexts the TLS approximation is in fact acceptable; still there are several experimentally
observable features which cannot be explained within the TLS approximation.

The plan of the paper is as follows. In section 2 a tensorial Hamiltonian for the eight-
state system is introduced. Physical properties such as the specific heat and the static
dielectric susceptibility are derived and compared with the results from using the two-level
approximation. In section 3 we discuss the coupling of the eight-state system to static
external electric or strain fields. We propose an experiment for measuring directly the
parameter governing tunnelling along a face diagonal. (This parameter will dominate all
of the corrections to the TLS results.) In section 4 strongly coupled pairs of eight-state
systems are considered. We discuss the situation by means of group theory, and investigate
in particular the relevance of different asymmetry terms for echo experiments. Finally
section 5 gives a conclusion.

2. Specific heat and static susceptibility

2.1. Theory

Before going into a discussion of the ESS we would like to summarize some of the well-
known features of a TLS. This system describes a particle in a double-well potential
depending on one single coordinate (instead of the three space dimensions of the ESS).
The tunnelling Hamiltonian of the TLS reads in the ‘local’ basis (i.e. the basis whereσz
represents the position to the ‘left’ or ‘right’ of the particle)

H = k0σx. (1)

The symbolsσx, σz denote the Pauli matrices. The only parameter entering the system is the
tunnelling parameterk0 describing tunnelling between the left-hand state and the right-hand
state. It is given by the WKB formula

k0 = −E0 exp

{
− d

2h̄

√
2mV0

}
< 0. (2)

Here the energyE0 is the oscillator frequency of a well,d is the distance between the
two wells, m is the mass of the tunnelling particle, andV0 is the barrier height. Since
σz represents the position operator, all external fields couple to the productFσz, whereF
stands for the amplitude of an external field (such as a static electric or strain field and an
electromagnetic or acoustic wave).

Two characteristic features of the TLS have been studied in numerous experiments: the
temperature dependence of the specific heat (the Schottky anomaly)

cv(T ) = k2
0

kBT 2
sech2(βk0) (3)
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and the temperature dependence of the static susceptibility

χ
stat (T ) = p2

h̄ε0

1

k0
tanh(βk0). (4)

Let us now ask what observable differences appear if we consider the ESS. In order to find
an answer, we derive the corresponding formulae of this system and compare them to those
of the TLS. For the ESS, three coordinates determine the wave function in the local basis
{|xyz〉} with x, y, z = ±1; the origin of the system is located at the centre of the cube, and
the axes point along its edges. The position operator now becomes a vector:

r̂ = d

2

(
rx
ry
rz

)
= d

2

(
σz ⊗ 1⊗ 1
1⊗ σz ⊗ 1
1⊗ 1⊗ σz

)
(5)

where the symbol⊗ denotes a tensor product and each factor stands for one coordinate. The
tunnelling Hamiltonian of the ESS can be decomposed into tensor products; edge tunnelling
along thex-direction for example is described byk(σx⊗1⊗1). Tunnelling along the face or
space diagonal involves more than one coordinate; the corresponding Hamiltonian is given
by

Ĥ0 = k(1⊗ 1⊗ σx + 1⊗ σx ⊗ 1+ σx ⊗ 1⊗ 1)

+ f (1⊗ σx ⊗ σx + σx ⊗ 1⊗ σx + σx ⊗ σx ⊗ 1)+ r(σx ⊗ σx ⊗ σx). (6)

Here k, f , and r are the amplitudes for tunnelling along an edge, a face diagonal, and a
space diagonal. Let us next write down the elastic and electric momenta connected with
the defect. The separation of charge which arises from the off-centre position causes an
electric dipole moment

p = qr p =
√

3

2
qd. (7)

The corresponding energy of interaction with an external electric fieldF reads

WF = −
∑
i

Fipi. (8)

Moreover the defect distorts the host crystal locally, producing thus an elastic moment.
Würger [4] derived as the leading contribution a quadrupole moment:

Qij = 4

d2
rirj (1− δij ). (9)

Remember here thatri is a component of the position operator. The corresponding energy
of interaction with a strain field is given by

Wε = −g
∑
i,j

Qij εij (10)

whereg is a coupling constant andεij is the tensor of the distortion produced by the strain
field. In the static case this tensor can be derived from the exerted pressure using standard
elastomechanical relations [3]; in the case of acoustic waves it readsεij = (1/2)(∂jui+∂iuj ),
whereu denotes the amplitude of the phonon.

Just like for the TLS, the tunnelling parameters can be found with the WKB formula
(2). Assuming that the heights of all of the potential barriers are of the same order of
magnitude, the three tunnelling parameters differ only for a simple geometric reason: the
distance separating the minima is different (the edge of a cube is shorter than a face diagonal,
etc). One concludes that|k| > |f | > |r|. Hence in a first approach one can neglectf and
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r. Then the Hamiltonian (6) factorizes, and three independent TLS remain, one for each
spatial direction. This is just the two-level approximation, keeping in mind the factor of
three: one ESS (withf = r = 0) is equivalent to three TLS. One can then conclude that
as soon asf and r become non-negligible, differences between the ESS and the TLS will
arise.

Let us go further in our analysis of the ESS. The simple structure of the problem allows
the exact calculation of its spectrum and eigenvectors. They are given by the following
scheme:

E3 = −3k + 3f − r: | − −−〉
E2 = −k − f + r: | + −−〉, | − +−〉, | − −+〉
E1 = k − f − r: | + +−〉, | + −+〉, | − ++〉
E0 = 3k + 3f + r: | + ++〉

(11)

with

|πxπyπz〉 = 1√
8

∑
x,y,z=±1

f πxx f
πy
y f

πz
z |xyz〉 (12)

f
πj
j = exp

(
iπ

4
(1− πj )(1− j)

)
. (13)

Here πi = ± denotes the parity of the wave function in thei-direction. The spectrum
consists of four levels with a threefold degeneracy of the second and the third level.
The transitions shown in figures 1(a) and 1(b) are derived from the electric and acoustic
interactions given above. As an explicit example we consider an electric field oscillating in
the y-direction. Figure 1(a) gives a complete scheme for the possible transitions.

(a)

(b)

Figure 1. (a) Selection rules of the ESS for an electric field oscillating in the [100] direction,
together with the Schoenflies notation. (b) Possible electric (single arrows) and acoustic (double
arrows) selection rules for the ESS.

Every geometric constellation has its specific selection rules; we refrain from giving a
complete list of all of these possibilities, and instead propose in figure 1(b) a schematic
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diagram where all possible transitions are shown. Note that for the electric transition, one
of the paritiesπi changes its sign, whereas for the acoustic transitions, two parities change
their signs. Hence in the acoustic case, the productπ1π2π3 is conserved.

There are three electric transitions with almost the same frequency,∼2k. In the
acoustic case, there are two transitions with frequency∼4k, and two ‘inside’ the degenerate
triplets. (These transitions are visible as soon as some perturbation destroys the degeneracy;
cf. section 3.) The fact that for both couplings only one transition frequency appears is
crucial for the validity of the two-level approximation: by construction the TLS would not
be able to reflect more than one single energy. Indeed the approximation cannot account for
the fact that the frequency induced by electric fields differs from that induced by acoustic
fields.

Let us now turn to the temperature dependence of the specific heat and that of the static
susceptibility. The partition function is given by

Z = Tr(e−βH ) =
∑
l

ηle
−βEl β = 1

kBT

whereηl denotes the degree of degeneracy of the eigenvalueEl , andkB is the Boltzmann
constant. The free energy of the system is then given byF = −kBT lnZ, and the specific
heat reads

cv(T ) = kBβ
2

Z2

∑
i<j

ηiηj (Ei − Ej )2e−β(Ei+Ej ). (14)

Inserting the energies given in (11), one finds for the specific heat of the ESS

cv(T ) = kBβ
2

Z2
{(6k + 2r)2e−6βf + 3(4k − 4f )2e−β(−2k+2f−2r)

+ 9(2k − 2r)2e2βf + 3(2k − 4f + 2r)2e−β(−4k+2f )

+ 3(2k + 4f + 2r)2e−β(4k+2f ) + 3(4k + 4f )2e−β(2k+2f+2r)}. (15)

This expression reduces to the corresponding formula for the TLS when one setsf = r = 0.
Let us now write down the susceptibilityχ . The response of the ESS to an external

field is given by the commutator formula [7]

χ
ij = i

h̄
〈[pi(t), pj (t0)]〉2(t − t0)

with the time-dependent dipole operatorp(t) = exp(i/h̄Ĥ t)p̂ exp(−i/h̄Ĥ t), and the Gibbs
mean value〈 · 〉 = Tr( · exp(−βĤ ))/Z. In order to find the static susceptibility, one has
to look at the real part of the Laplace transform for zero frequency. This leads to

χstatx,x (T ) =
2

Z

p2

h̄ε0

{
[eβ(3k+3f+r) − e−β(k−f−r)]

1

(2k + 4f + 2r)

+ 2[eβ(k+f−r) − e−β(−k−f+r)]
1

(2k − 2r)

+ [e−β(−k−f+r) − eβ(−3k+3f−r)]
1

(2k − 4f + 2r)

}
. (16)

All other elements of the susceptibility tensor are then known: the symmetry of the problem
implies χx,x = χ

y,y = χ
z,z and χx,y = χ

x,z = χ
y,z = 0. Again this result reduces to

the corresponding formula for the TLS in the case of vanishing face and space diagonal
parameters.
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At first sight, almost no contrast between the two models emerges from the above
formulae. Taking reasonable values forf and r (say r/f = f/k ≈ 10–20%), the plots
look practically the same. The question arises of whether there is at all a simple observable
feature which distinguishes between the TLS and the ESS. Such a criterion does indeed
exists. It is based on the observation that for the TLS the relationk2

0 ∂T χ = cV holds,
whereas this is not true for the ESS. One simple consequence is that the turning point of
the susceptibility and the maximum of the specific heatcoincide for a TLS, whereas they
occur atdifferent temperatures for the ESS. To be more explicit: defining

Tmax:
∂

∂T
cV (T = Tmax) = 0

Tturn:
∂2

∂T 2
cV (T = Tturn) = 0

(17)

one finds that for the TLS

Tmax= Tturn

whereas for the ESS

Tmax< Tturn (18)

holds. It is not possible to give an explicit expression for1T = Tturn− Tmax as a function
of f andk, since transcendental equations are involved. Instead we plot in figure 21T as a
function off with the parameterk. It turns out that1T depends only very weakly onk for
0.5 K < |k|/kB < 1.5 K, and that a linear relation1T ≈ 0.85|f |/kB holds approximately.

Figure 2. 1T = Tturn− Tmax as a function of|f |. The different points indicate different values
of |k| between 0.5 and 1.5 K. The line is a linear fit with a slope of 0.85.

As the ESS is the more realistic model, the deviationTmax 6= Tturn should be visible in
experiments. This will be discussed in the following.

Note that Fiory [8] has shown that even for low concentrations the ‘Schottky anomaly’
of the specific heat gets distorted by the dipole–dipole interaction between the defects, and
a similar effect is expected for the dielectric susceptibility. Both effects—the interaction
and the face tunnelling—might interfere in a real sample. But by examining probes with
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different defect concentrations, it is in principle possible to distinguish between the two
effects; any change depending on a variation of concentration results from interactions,
while effects that are independent of such a variation arise due to face diagonal tunnelling.

2.2. Experimental data

Let us now take a look at the experimental data. We will make use of the specific heat
data from Pohl and co-workers [2] and the dielectric susceptibility data from Ensset al [6].
Sincef will be the leading correction to the TLS approximation, we will neglectr in the
following. We then have two fitting parameters,f andk, and we can look for the optimal
set in order to reproduce the data. But in fact there is a third undetermined quantity: the
defect concentration of the probe cannot be fixed accurately. But the concentration varies
only over a very small range, so we focus on the tunnelling parameters. All parameter sets
consistent with the experimental data (obtained by fitting the relations (15) and (16) to the
data) do in fact confirm the relationTmax< Tturn.

For a further comparison of the two models, we will proceed as follows. The TLS is
completely specified by the parameterk0, whereas the ESS is specified by the pair(k, f ).
Now one can ask what relation between the ESS parameter pair(k, f ) and the single TLS
parameterk0 must hold in order to produce either the same maximum ofcv or the same
turning point ofχ . ThecV -maxima of the two models coincide if the equationk+1.7f ≈ k0

is fulfilled (which can be verified by differentiating and solving a transcendental equation).
The turning points ofχ are the same ifk + 2.7f ≈ k0 holds. This shows that a TLS
analysis does indeed yield different tunnelling parameters for the two experiments, which
is counterintuitive; after all, the same degree of freedom produces both anomalies. Usually
such effects were thought to be due to experimental uncertainty; but the above considerations
show that the difference is a systematic consequence of tunnelling along the face diagonal.
On the basis of the difference betweenTmax andTturn, one can estimate an optimal parameter
set. In order to do so, one has to solve a set of transcendental equations, whereTmax and
Tturn are given by the data, andf and k are the unknown variables. We have given the
result in table 1.

Table 1. The parameter set consistent with experimental data. In the lower part of the table,
effective values for a TLS are listed.

6Li 7Li

k/kB −0.63 K −0.45 K
f/kB −0.08 K −0.06 K

cv : (k + 1.7f )/kB −0.77 K −0.55 K
χ : (k + 2.7f )/kB −0.85 K −0.61 K

At first sight, the results fork look smaller than those reported in the literature. But keep
in mind that most experiments so far were fitted by means of a TLS approach. Therefore we
have also listed such ‘effective’ parameters as emerge from an equivalent fit within the TLS
model. These values are in line with those reported by other authors. The above parameter
set is also in good agreement with restrictions arising from the WKB formula (2). Then the
corresponding restrictions concern both the ratio

f

k
= exp

{
−
√

2mV0

2h̄
d(
√

2− 1)

}
(19)
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and the ratio of the isotope effect:

6k
7k
= exp

{
−d
√

2V0

2h̄
(
√

6m−
√

7m)

}
. (20)

The tunnelling distanced ≈ 1.4 Å and the massm of lithium are known; the height of
the barrierV0 between all wells should be of the same order of magnitude. The ratios
proposed above (f/k ≈ 0.13 and6k/ 7k ≈ 1.4) are then consistent withV0 ≈ 200 K and
V0 ≈ 140 K respectively. This seems a rather reasonable value for the barrier height. So
the above-given parameter set is at least consistent with the given data. We would not
like to go further than this statement, but simply stress that the ESS is not in contradiction
with experimental data. Furthermore, it reflects much better the microscopic picture that we
have in mind when talking about a substitutional defect. Still, the TLS seems useful: it has
almost the same temperature dependence of the specific heat and the static susceptibility,
and is of course much simpler. Nevertheless, there appear to be some aspects which the
TLS cannot reproduce at all. In the following, we will discuss these aspects.

In section 3, such properties arise from the tunnelling parametersf and r; we will
show that these features make it possible to measure the tunnelling parameters directly.
The properties described in section 4 are based on the particular geometric structure of the
ESS; this structure leads to selection rules which cannot be understood within the framework
of a one-dimensional model such as the TLS.

3. Interaction with external fields

As mentioned above, the defects exhibit both electric and elastic moments; they hence
couple to the corresponding external fields. The main effect of static fields is a modification
of the energy levels, whereas oscillating fields lead to characteristic transition rules. We
will discuss the features in three steps. First, we look at the defect under pressure, and,
second, we look at the defect under the influence of a static electric field. For both cases
we look at the field dependence and the selection rules for transitions induced by acoustic
and electromagnetic waves. On the basis of these results we finally propose an experiment
which can determine the tunnelling parameterf (face diagonal tunnelling). Indeed, in
sections 3.1 and 3.2 we will focus on situations wheref becomes visible.

3.1. The defect under pressure

Let us begin by considering a defect under the influence of external pressure. As
discussed before (see equation (9)), the defect exhibits an elastic quadrupole moment
Qij ∝ rirj (1 − δij ) which interacts with the strain fieldεij . The latter can be derived
by elastomechanical equations from the pressure exerted on the system [3]. The interaction
energy (cf. section 2) readsWε = −g

∑
ij Qij εij . SinceQij has (by definition) no diagonal

part, the diagonal part of the strain field is irrelevant for the interaction. This fact simplifies
the discussion considerably: the diagonal part of the strain field depends on the pressure in
a rather non-trivial way.

The energy eigenvalue problem of a defect in an arbitrary strain field (i.e. uniaxial
pressure in an arbitrary direction) is not analytically solvable. Yet some constellations with
high symmetry can be solved by means of group theory. Such tractable cases appear for
uniaxial pressure in the [100], [110], and [111] directions. Let us write down the interaction
Hamiltonian for these cases. In order to do so, one has to derive the strain field which arises
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from the exerted pressure [3]. For the cases that we consider, these strain fields and the
corresponding interaction energies are listed in table 2.

Table 2. The distortion field and interaction energy for different directions.

Direction of
uniaxial pressure Distortion fieldε Interaction energyWε

[001] εij =
 ε1 0 0

0 ε2 0
0 0 ε2

 0

[011] εij =
 ε1 0 0

0 ε2 ε

0 ε ε2

 − 4gε

d2
(1⊗ σz ⊗ σz)

[111] εij =
 ε1 ε ε

ε ε1 ε

ε ε ε1

 − 4gε

d2
(1⊗ σz ⊗ σz + σz ⊗ 1⊗ σz + σz ⊗ σz ⊗ 1)

Figure 3. Energy levels of an ESS (in units ofk) versusa = 4gε/d2, which is proportional to
the uniaxial pressure in the [110] direction.

The off-diagonal elementsε of the strain fields are proportional to the pressure; the
proportionality factor depends on the crystal’s elasticity modulus. The case of exerting
pressure in the [100] direction turns out to be trivial, since the strain field then has no off-
diagonal elements and the interaction energy thus vanishes. The eigenvalue problems for
the other two cases have been discussed in a two-level approximation (i.e. forf = r = 0)
by Gomezet al [5]. We want to avoid this approximation, and focus on the case where the
pressure is exerted in the [110] direction (a general discussion can be found in [12]). In
this situation the Hamiltonian of a defect under uniaxial pressure reads

H = H0− 4gε

d2
(1⊗ σz ⊗ σz). (21)

We will not write down any formulae concerning the eigenvalues and eigenvectors (which
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can be found in reference [12]); instead we will plot all of the interesting information and
give a discussion.

Figure 3 shows the dependence of the energy levels on the pressure. The energies
labelled E3, E4, E5, and E6 grow linearly with pressure; the others vary quadratically
for small pressure and then end up in a linear regime. All degeneracies are obviously
lifted. With growing pressure, the spectrum changes from four almost equidistant levels to
four doublets; the energy difference inside such a doublet is asymptotically of the order
of f . The upper two doublets are separated by a gap from the lower two; this gap
varies (asymptotically) linearly with pressure, whereas the distance of the doublet splitting
approaches∼2k.

Figure 4. Energy levels of an ESS with uniaxial pressure in the [110] direction, and the electric
(left-hand diagram, single arrows) and acoustic (right-hand diagram, double arrows) transitions.

Figure 4 shows the possible electromagnetic and acoustic transitions; the pressure is
chosen such that the coupling energy is roughly the same as the tunnelling energy. In
the left-hand part of the scheme, single arrows indicate a dipole transition (microwaves),
and in the right-hand part, double arrows denote quadrupole transitions (acoustic waves).
The symbolF here stands for the electric field of the electromagnetic wave, andε for
the (symmetric) distortion field of the acoustic wave (withεij = 1 for row index i and
column indexj ). The scheme shows that most transitions can be induced by making an
appropriate choice of the direction of the oscillating fields; in particular the frequency∼f
can be induced by a microwave field withF oscillating in the [110] direction.

3.2. The defect in the presence of a static electric field

Let us now consider the defect in a static electric field (cf. equation (7)). The energy of
the coupling between the field and the defect readsWF = −

∑
i Fipi . Again, the general

situation of a defect in an electric field of arbitrary direction is not analytically solvable.
Two possible restrictions allow such a solution to be obtained. One of them is to neglect
f andr; in this ‘two-level approximation’ the Hamiltonian̂H = Ĥ0−F · r factorizes into
three two-dimensional problems. It is then easy to derive the spectrum and the transitions.
This has been done by Gomezet al [5] for special symmetries, but it is in fact possible for
arbitrary directions of the electric field. The second possibility is to consider cases where
the electric field points along the [100], [110], and [111] directions. The resulting problem
then still has a high symmetry, and group theory makes it possible to find a solution even
for finite f and r. The interesting new feature emerging is the occurrence of transition



Cubic defects 8571

frequencies proportional tof (neglectingr) in the [110] and [111] cases. These transitions
are interesting since they allow a direct measurement off (which will be discussed below).
We will consider the [111] case here; the others can be found in reference [12].

Figure 5. Energy levels of an ESS (in units ofk) versusb = pF/√3|k|, which is essentially
the static electric field in the [111] direction.

The Hamiltonian for a defect with an electric field in the [111] direction reads

H(111) = k(1⊗ 1⊗ σx + 1⊗ σx ⊗ 1+ σx ⊗ 1⊗ 1)

+ f (1⊗ σx ⊗ σx + σx ⊗ 1⊗ σx + σx ⊗ σx ⊗ 1)+ r(σx ⊗ σx ⊗ σx)
− q d

2
Fstat(1⊗ 1⊗ σz + 1⊗ σz ⊗ 1+ σz ⊗ 1⊗ 1). (22)

The presence of the exterior field breaks the cubic symmetry (OH) of the defect. In the
case considered, one is left with the so-called C3v symmetry group (i.e. there is one
threefold axis and there are three vertical reflection planes). Group theory then shows
that the spectrum consists of four singlets and two doublets, since the eight-dimensional
representation decomposes into four one-dimensional and two two-dimensional irreducible
representations. Correspondingly, it is possible to block-diagonalize the Hamiltonian. These
blocks can then be treated in (degenerate) perturbation theory, sincef, r � k, pF . Again
we refrain from writing down details, and instead restrict ourselves to a discussion of the
results.

In figure 5 the eigenvalues are plotted against the static fieldFstat. In contrast to the level
shift due to pressure, there is no linear field dependence of any energy level. Neglecting
f and r, the spectrum conserves the 1:3:3:1 degeneracy scheme. The four levels simply
spread with increasing field as 2

√
k2+ (qdF/2)2. Considering finitef and r changes the

situation. The most remarkable new feature is the splitting of the threefold-degenerate states
into a singlet (E1, E2) and a doublet (E5, E6). This splitting is proportional to the face
diagonal tunnelling parameterf ; it is given by

E1− E5 = E2− E6 = f 3(pF/
√

3)2

(pF/
√

3)2+ k2
. (23)
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Figure 6. Energy levels of an ESS with the electric field in the [111] direction, and the electric
(left-hand diagram, single arrows) and acoustic (right-hand diagram, double arrows) transitions.

Figure 6 gives the transition scheme of the situation. In the left-hand part of the scheme,
we again show the dipole transitions. Two cases are listed: one where the electric field
of the microwaves oscillates in line with the static field, and one where it oscillates in a
perpendicular direction.

Suppressing amplitudes∝|f/k|2, we find in the first case four transitions; the selection
rules remain essentially unaltered and lead to transitions of the order of∼2k. If the
oscillating field is perpendicular to the static field, many transitions are possible: those
‘over the gap’ with a frequency growing with increasing static field, as well as those taking
place ‘inside’ a triplet. The frequency of the latter is asymptotically determined byf . The
probability for the dipole transition grows with the amplitude of the static field,∝F 2

stat.
The acoustic selection rules are shown in the right-hand part of figure 6. There are a

whole variety of possible transitions; again we want to focus on the one with frequencyf .
The distortion tensorεij for such a transition has to be proportional to

a1(2εxy − εxz − εyz)+ a2(εxz − εyz)
with arbitraryai . One possible choice is a sound wave propagating along the(y–z) direction
being polarized in thex-direction. The transition amplitude of such a constellation is given
by ∣∣∣∣k2− 2(qdFstat/2)2

k2+ 2(qdFstat/2)2

∣∣∣∣2 .
The increasing static field reduces the amplitude, which vanishes forFstat =

√
2kqd. For

coupling energies greater than the tunnelling energy, the transition probability then increases
again.

3.3. Measuring the face diagonal tunnelling

The results of the preceding sections show that there are different possibilities for measuring
the face diagonal tunnelling parameter involving choosing an appropriate geometric
constellation for the exterior static and oscillating fields. Let us focus in the following
on the situation of a static electric field pointing along the [111] direction (cf. section 3.2).
The electric field of the microwave is assumed to oscillate perpendicularly to the static field
(for example, in the [0, 1,−1] direction). The selection rules tell us that a transition with
frequency∼f (which should be about 100 mK) is possible. In order to have a transition rate
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of the order of unity, one has to apply a static field which leads to an interaction energy of
the order ofk. This is fulfilled if pF ≈ k. Since the dipole moment of the defect is known
to bep ≈ 2.6D andk ≈ 1 K (cf. [4]), the field strength should beFstat≈ 106–107 V m−1.
As far as we are aware, such an experiment has never been performed.

4. Strongly coupled pairs

In section 2 we argued that a substitutional defect exhibits an electric as well as an elastic
moment. These momenta lead to a coupling of the defects to external fields; moreover
they produce an interaction between neighbouring defects. Here again both are present, the
quadrupole coupling of the elastic moments and the dipole–dipole coupling of the electric
moments. In potassium chloride doped with lithium, the electric interaction dominates the
elastic coupling by an order of magnitude. Hence only the dipole–dipole interaction

W = 1

4πεε0

(
p1 · p2

R3
− 3

(p1 ·R)(p2 ·R)
R5

)
= J

4
(e1 · e2− 3(e1 · eR)(e2 · eR)) (24)

with

J = 1

πεε0R3

p2

3
(25)

is relevant. Herepi denotes the dipole moment of defecti, R is the vector connecting the
defects, thees aree = (2/d)r, andε0 andε are the dielectric constant of the vacuum and
of the potassium chloride matrix respectively.

The structure of the host crystal confines the defects to discrete sites on the lattice.
Hence the possible distances between the pairs will be a discrete set. Although this fact
is irrelevant for the bulk of the pairs which have a distance of, say, ten lattice constants
or more (the crystal then appears as a quasicontinuum), it is most relevant for the strongly
coupled pairs which we will consider here. Geometric considerations show that, on the
fcc lattice, the nearest neighbours NN1 lie along the [1/2, 1/2, 0] directions and the next-
nearest neighbours NN2 lie along the [1, 0, 0] direction. Comparing the energy scales
for neighbouring pairs, one finds that the interaction energy dominates the ESS tunnelling
parameters. This can be estimated by evaluating the dipole–dipole interaction (24) using the
lattice constanta ≈ 6.23 Å and the dipole momentp ≈ 2.6D. For the nearest neighbours
NN1 one is led to a value ofεJ ≈ 710 K (evaluated withR = a/√2). In order to determine
the value of the coupling, one has to specify the dielectric constant of the material. Yet
on the atomic length scale it is not clear which value to take for this constant; at least one
can confine it to the intervalε(vacuum) = 1 < ε < ε(KCl) = 4.25. This tolerance leads
to values 170 K< JNN1/kB < 710 K. For the next-nearest neighbours NN2 the interval is
60 K< JNN2/kB < 250 K. This estimation, rough as it is, shows that the coupling between
neighbouring defects exceeds by at least one order of magnitude the intrinsic energy scales
(which are given byk ≈ 1 K). The strongly coupled pairs hence constitute a composite
degree of freedom which should be considered as a unit.

Klein [11] and one of the authors [10] have discussed defect pairs in the two-level
approximation; within this approximation one can predict the existence of a small frequency
4k2/J for strongly coupled pairs. For nearest or next-nearest neighbours this energy should
be between 5 mK and 50 mK. Weiset al [9] investigated the system experimentally by
measuring Rabi frequencies in spin-echo experiments. They found a broad distribution of
frequencies in the 10 mK region; in addition there was a rather narrow distribution of Rabi
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frequencies:

�R ∝ 4k2/J

E
F · p.

The analysis of these experiments was first done by considering the strongly coupled pair
as an effective TLS with a tunnelling rate 4k2/J and an asymmetry1. The total energy
of such an effective TLS then readsE =

√
12+ (4k2/J )2 (which is the resonance energy

of the external field). Weis now argued that the measured frequency distribution is due to
a distribution of the asymmetry1. Such a distribution arises from imperfections of the
probe, whereas there is no plausible reason for a distribution of the dipole moment.

Still, the existence of only one frequency was somewhat striking; obviously only one
pair constellation contributed to the signal (otherwise additional Rabi frequency peaks
would appear). In order to explain this puzzle, Würger [4] discussed a pair of ESS using
perturbation theory. He showed that only the pair constellation NN2 has a frequency in
the range between 5 mK and 50 mK. For all other constellations, geometric selection rules
prohibit transitions with these energies. He also showed that an asymmetry proportional to
the position operator explains the distribution of frequencies. Yet he left open the question
of which role other forms of asymmetries (e.g. a ‘quadrupole asymmetry’ proportional to
rirj which couples to internal strain fields) will play.

In order to treat this problem, one can discuss the NN1 and NN2 cases applying group
theory and tensor factorization. In this context, all types of asymmetry are easily discussed,
considering them as small perturbations. We restrict ourselves to a brief overview of the
proposed methods, and present the results for the NN2 constellation (for details, cf. [12]).

First, the basis{|xyz〉} for one defect is expanded to{|x1x2y1y2z1z2〉} for the pair. In
this basis the Hamiltonian reads

H = H0+W (26)

whereH0 stands for the tunnelling energy of both defects, andW denotes the dipole
interaction. This (64-dimensional) Hamiltonian does indeed factorize, just as in the case of
a single defect (we writeki for the edge tunnelling rate of the defecti):

H = (k1(σx ⊗ 1)+ k2(1⊗ σx)− J
2
(σz ⊗ σz))⊗ 14⊗4⊗ 14⊗4

+ 14⊗4⊗
(
k1(σx ⊗ 1)+ k2(1⊗ σx)+ J

4
(σz ⊗ σz)

)
⊗ 14⊗4

+ 14⊗4⊗ 14⊗4⊗
(
k1(σx ⊗ 1)+ k2(1⊗ σx)+ J

4
(σz ⊗ σz)

)
. (27)

We are left with three four-dimensional problems. After this factorization it is easy to derive
the complete spectrum together with all of the selection rules. This spectrum consists of
different multiplets, which are separated by gaps of the order of∼J/4. For the experiments
considered, the temperature is much lower than this energy, and hence only the lowest level
group is of interest. In the middle of figure 7 the spectrum of this lowest multiplet is shown
together with the dipole selection rules. It consists of eight states with a degeneracy scheme
1:1:2:2:1:1. The energy eigenvalues are typically each the sum of three roots of the form√
(J/4)2+ (k1± k2)2 and

√
(J/2)2+ (k1± k2)2.

In order to determine the transitions caused by an external field, one has to consider
an interaction with the two defects:WF = −F · (p1 + p2). The spatial dependence ofF
is neglected, since the wavelength ofF (≈1 cm) is much greater than the distance of the
two defects (≈10 Å). There is only one transition frequency (just as in the case of a single
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defect). But here transitions are only induced by electric fieldsF oscillating in line with
the distance vectorR.

The structure of the spectrum together with the selection rules makes it again possible
to talk about the pair as an effective TLS with tunnelling rate 4k1k2/J . In particular, it is
possible to use the well-known Rabi formalism for the TLS in order to interpret the echo
experiments. In a way this is ana posteriori justification of the TLS approximation which
had been proposed in the context of defect pairs [10].

Considering an asymmetry is now somewhat more complicated than in the two-level
approximation. There the asymmetry was simply proportional to the one-dimensional
position operator. The ESS is in a sense three dimensional, and one has to find a way
to assign a different potential value to each well. This can be done by introducing three
dipole terms, three quadrupole terms, and an octupole term. Allowing different asymmetries
at the two defects, one gets

Vd =
∑
i=x,y,z

vi(r
1
i + r2

i )+ δvi(r1
i − r2

i ) (28)

Vq =
∑

i,j=x,y,z
i 6=j

vij (r
1
i r

1
j + r2

i r
2
j )+ δvij (r1

i r
1
j − r2

i r
2
j ) (29)

Vo = vxyz(r1
x r

1
y r

1
z + r2

x r
2
y r

2
z )+ δvxyz(r1

x r
1
y r

1
z − r2

x r
2
y r

2
z ) (30)

with the mean asymmetryv = (v1 + v2)/2, and the differenceδv = (v1 − v2)/2. The
existence of dipole and quadrupole asymmetries is plausible since it can be deduced from
electric and elastic internal fields which couple weakly to an arbitrarily chosen defect. In
contrast, the octupole term has no such explanation, and we hence neglect it in the following.
The asymmetriesVd andVq will be of the same order of magnitude as 4k1k2/J . Treating
them properly, one is led to the following conclusions.

(i) We find that the part of the dipole mean asymmetry which is parallel to the distance
vector R alters the frequency to

√
(4k1k2/J )2+ v2; this result is consistent with that

proposed by Ẅurger [4].
(ii) None of the other terms (such as the quadrupole terms) change the transition freq-

uency; neither does the difference in asymmetry.

These results are shown in figure 7. In the middle we show the lowest multiplet without
asymmetry; on the right-hand side we show the ‘dipole asymmetry’ changing the energy
levels, and on the left-hand side we show the ‘quadrupole asymmetry’, simply shifting
the levels without changing the frequencies of the allowed transitions. The experiments
performed by Weis are hence only sensitive to themean dipole asymmetry. No other forms
of asymmetry play a significant role here.

5. Conclusion

In this article we had the aim of comparing the physics of a two-level system (TLS) to
that of an eight-state system (ESS). Both systems are used as possible models for cubic
substitutional defects such as the lithium atom in a KCl host lattice. The ESS reflects much
better our microscopic picture of the defect, and it is hence interesting to know what features
are left out of consideration when treating the defect as a TLS.

Using a tensorial notation, we reminded the reader that the ESS reduces to three TLS if
tunnelling along the face and space diagonal of the cube is neglected. Then we presented
three contexts in which differences between the two models arise.
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Figure 7. The lowest multiplet of NN2.

First, we looked at the temperature dependence of the specific heat and of the static
dielectric susceptibility. A simple way to summarize the differences of the models is to
state that for the TLS the relationk2 ∂T χ = cv holds, whereas this is not true for the ESS.
In particular, the maximum temperature of the specific heat and the turning point of the
susceptibility coincide for the TLS, whereas they are different for the ESS. We think that
the experimental data do indeed show this tendency. The ratiof/k (face to edge tunnelling)
and the isotope effect6k/ 7k estimated from the data lead to reasonable orders of magnitude
for the barrier height (100–200 K).

Second, we investigated the differences of the two models in the presence of external
forces (uniaxial pressure and a static electric field). There appear different aspects where
tunnelling along the face and space diagonal of the cube is visible. These features make
it possible to set up a resonance experiment where the face diagonal tunnelling can be
measured directly: applying the electric field along the [111] direction, there are (both
acoustic and electromagnetic) transitions with frequenciesω ∼ f (pF)2/((pF)2+k2) (where
p denotes the dipole moment andF the static electric field). Of course such features cannot
be described within the framework of a TLS.

As a third context, we discussed strongly coupled defect pairs. Here again some
properties arise that cannot be explained by a two-level approximation. For strongly coupled
pairs,geometricselection rules inhibit transitions for some constellations (such as the nearest
neighbours). In addition, different asymmetry terms are possible for an ESS, whereas in the
TLS only one such term appears. It is because of the interplay of the selection rules and
the structure of the spectrum that these other asymmetries are not observable in the echo
experiments performed. This is why the situation can be described in terms of an effective
TLS.

We thus conclude that there are a number of situations in which the ESS shows
observable features which cannot be described by a TLS. Nevertheless, the latter is a good
approximation in all contexts where the geometry and the parameters for tunnelling along
the face and space diagonal are of no relevance. In these situations, the TLS, being the
simplest model for a tunnelling degree of freedom, does in fact sketch all of the essential
features of the defect.
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